Information Today, Inc. Corporate Site KMWorld CRM Media Streaming Media Faulkner Speech Technology DBTA/Unisphere
PRIVACY/COOKIES POLICY
Other ITI Websites
American Library Directory Boardwalk Empire Database Trends and Applications DestinationCRM Faulkner Information Services Fulltext Sources Online InfoToday Europe KMWorld Literary Market Place Plexus Publishing Smart Customer Service Speech Technology Streaming Media Streaming Media Europe Streaming Media Producer Unisphere Research



Vendors: For commercial reprints in print or digital form, contact LaShawn Fugate (lashawn@infotoday.com)

Magazines > Computers in Libraries > April 2013

Back Index Forward
SUBSCRIBE NOW!
Vol. 33 No. 3 — April 2013
BUILDING DIGITAL LIBRARIES
Data Discovery and Data Curation Going Hand in Hand
by Terence K. Huwe

The emergence of Big Data research practices, which is revolutionizing how people parse datasets large and small, can actually strengthen the impact of library discovery skills.
In just a few short years, data curation has been widely embraced by the profession and is recognized by many as an emerging core competency. The reasons are many, but the power of the web as a platform for mashing up diverse data sources is certainly a key factor. New government regulations require researchers to share data compiled in grant-funded research, which also provides a powerful incentive for taking a fresh look at how data can be preserved. In 2011, the Association of Research Libraries published an excellent summation of the potential of data curation for the library profession titled “New Roles for New Times: Digital Curation for Preservation” (arl.org/bm~doc/nrnt_digital_curation17mar11.pdf). This report was prescient in arguing that the volume of data and the need to preserve it is opening new opportunities for librarians to take center stage as collaborators.

Exciting times to be sure, but with all the new energy surrounding data curation of web-sourced and crowdsourced information, it is important to remember that new discovery techniques can also uncover fresh value in conventional data resources, particularly those that are generated by public mandate. For my part, I believe that there are significant “sleeper cells” of useful data—much of it gathered by public institutions—and these data can add value when they are added to born-digital, linked datasets.

Many public information databases are compiled with a single need in mind: regulating construction permits, monitoring the growth of electrical grids, and so on. These data are often in digital formats, and they can be added to web-based or cloud-based resources and used in ways that may not have been foreseen by the agencies that compile the data. The trick is to not only recognize what the primary goal for collecting is but also to discover what value the data might have in different contexts. With that in mind, I will offer two examples of how data resources can empower new ideas in the broadest sense, and I will also share an old-fashioned data acquisition story “from the trenches.” The story shows how local data gathered by a public agency made the crucial difference in a research project—and suggests how it might gain value as part of larger-scale data analysis.

Big Data, Big Results

One of the best aspects of working with linked data is the ability to combine diverse sources of information and then extrapolate more nuanced meaning from the improved dataset. This trend is accelerating, and it currently focuses on “new” and exciting areas such as crowdsourced data generation and online consumer behavior tracking. Rightly so: President Barack Obama’s re-election campaign used data-driven strategies alongside its political and rhetorical vision, to considerable advantage. The 2012 U.S. elections proved beyond a doubt that smart data, carefully deployed, was worth more than the hundreds of millions of dollars that were hurled at the general electorate. The overall electoral cycle demonstrated that Big Data is recognized by politicians and entrepreneurs, as well as academics.

In the academic sphere, Big Data have created all-new approaches to research. The New York Times published an interesting update on how humanists can now analyze thousands of online novels (The New York Times, Jan. 27, 2013, p. B3). The article describes how Matthew L. Jockers at the University of Nebraska–Lincoln conducted word- and phrase-level textual analysis of digital books to study long-term language patterns. The much larger sample revealed not only how authors use words but also how they inspire other authors over the years. One surprise finding was that relatively small number of authors have had an outsized impact on other writers, with Jane Austen and Sir Walter Scott at the forefront. This analytical approach is groundbreaking, insofar as it goes beyond the limitations imposed by much smaller samples of literature. The data application enables researchers to place authors in a larger historical context in ways that were not possible before.

Data-driven political campaigns and large-scale literature analyses demonstrate the blue-sky nature of Big Data—and the attendant opportunities to curate the data that is being produced. Yet even as the new frontier expands at a rapid rate, it is still possible to find value in existing data sources. In my opinion, Big Data applications and data curation will reach their fullest potential when all sources, both old and new, are re-examined with the new tools.

New Value From Not-So-New Data

Not all data worth curating are born on the web. Agencies that oversee construction variances, hospitals, nursing homes, public works, and public health all gather data, but in many cases, their charge is to gather data for a single, specific purpose. The expected “data deliverable” might be tabular information for policymakers and urban planners, flowing from the stream of new construction permits or other relatively mundane activities. It is easy to assume that such data may be well-targeted but do not have transferable value. The following example of wage research proves the opposite.

During the 2012 election season, one of our researchers was monitoring “living wage” campaigns across the country and was very interested to see how they would fare. In the political discourse surrounding this issue, many voices argue that increasing the minimum wage is bad for business, raising costs and placing a burden on small firms in particular. Others argue that increasing low wages in nominal increments—75 cents, for example—has a negligible effect on the economy, and yet they help household incomes significantly. Our researcher wanted to assess the actual performance and policy ramifications of living wages to shed light on the debate and needed help.

He needed to gather employee data on every fast-food restaurant in a specific metropolitan region. Easily accessible sources indicated that there were more than 3,500 establishments in all. Yet within that category, movie theaters, gas station convenience stores, and other purveyors of food-on-the-go needed to be winnowed out. None of the obvious data sources could provide such a pinpointed sample.

One of our library staff members contacted the county agency that monitors food safety in restaurants and eventually got through to its information technology department. She learned that the agency had detailed data on every establishment, including the exact number of employees at each location. This was the data our researcher needed to analyze low-wage market dynamics and write a policy brief—just 3 weeks before the election.

The agency monitors restaurants for compliance with public health regulations. But—and this is a big but—that is literally all it is concerned about. It gathers detailed data, but the data are only of interest when it finds a safety infraction and must fine the offending restaurant. In our case, we had no interest in restaurant health and safety, but we very much wanted to know employee counts at every restaurant location. This sample would be useful as a basis for testing how living wage policies played out “on the ground.” The agency had exactly what we wanted, and we asked if it would be willing to share the dataset with us.

The IT manager agreed, with the proviso that no information about regulatory compliance would be sent to us—just the whole list of restaurants and their employee counts. Once this was agreed upon, it took a few days to receive a data file that had all of what we wanted.

These data provide a comprehensive resource for labor economists, and they will retain their value over the long term. Moreover, good relations with the regulatory agency have established a foundation for receiving data updates periodically. The dataset will also have added value if it is mashed together with other resources, such as state- and national-level employee data, or coupled with web- and cloud-based news and information about restaurants in the region.

Curate—But Counsel Too

This reference story drives home the fact that even while we are moving full-speed into an era when crowdsourced, web-crawled, and tagged data are creating wholly new avenues for research, value still remains in ongoing data-acquisition programs. Many public agencies produce data, and more often than not, they are well-managed and have a service mentality. When locally gathered data of this nature are obtained and merged with other larger sources, the specificity of the local data enriches the “big picture” that Big Data can reveal.

The emergence of Big Data research practices, which is revolutionizing how people parse datasets large and small, can actually strengthen the impact of library discovery skills. As a result, information professionals stand to benefit not through digital curation and getting involved in Big Data analysis but also through the ongoing practice of reference and resource discovery. Because of this, I believe that it is important to promote our research and discovery acumen in the same manner that we are currently promoting the library as the “solution lab” for data curation. As admirable as that effort is, curation alone is, in my opinion, just half of the needed strategy. The crucial balance may be found by remembering that the skills inherent in reference work—discovery, pattern recognition, and analysis—offer a powerful means to convey our value proposition not only as data curators but also as information counselors with advanced data-acquisition skills.


Terence K. Huwe (thuwe@library.Berkeley.edu) is director of library and information resources at the Institute for Research on Labor and Employment at the University of California–Berkeley. His responsibilities include library administration, reference, and overseeing web services.
       Back to top